Fault tolerant supergraphs with automorphisms

Ashwin Ganesan*

Abstract

Given a basic graph Y and a desired level of fault-tolerance k, an objective in fault-tolerant system design is to construct a supergraph X such that the removal of any k nodes from X leaves a graph containing Y. In order to reconfigure around faults when they occur, it is also required that any two subsets of k nodes of X are in the same orbit of the action of its automorphism group. In this paper, we prove that such a supergraph must be the complete graph. The proof uses a result due to Cameron on k-homogeneous groups. Our work resolves an open problem in the literature.

Index terms — fault-tolerant system design; automorphisms; automorphic reconfiguration; graph theory; k-homogeneous groups.

1. Introduction

The interconnection network of a computing system is modeled as a graph $X = (V, E)$ whose vertices correspond to processors and with two vertices being adjacent whenever the corresponding two processors are connected by a direct communication link (cf. [1], [2]). In order to execute an algorithm on this computing system, it is required that the architecture X contain a given basic graph Y as a subgraph. If some of the nodes of X become faulty, in order to continue operation it is required that the functioning part of the network still contain the basic graph Y. We assume the basic graph Y is nonempty, i.e. it contains at least one edge.

Let Y be a nonempty graph on n vertices. A graph X is said to be a k-fault-tolerant realization of Y if X can be obtained from Y by adding a set of k new vertices (called spare nodes) and some edges so that the resulting graph X has the property that the removal of any k vertices from X leaves a graph which still contains Y (cf. [3]). In other words, X is a k-fault-tolerant realization of Y if X has $n + k$ vertices and $X - W$ contains a subgraph isomorphic to Y for each k-subset $W \subseteq V(X)$. In this case, if any k nodes of X become faulty, the network corresponding to the nonfaulty nodes of X contains the architecture Y and hence can continue to operate. In this sense, the architecture X can tolerate up to k node failures.

*53 Deonar House, Deonar Village Road, Deonar, Mumbai 400088, Maharashtra, India. Email: ashwin.ganesan@gmail.com.
In order to achieve so-called automorphic reconfiguration (cf. [3] p.253), it is also
required that, when \(k \) or fewer faults occur, there exists an automorphism of the
graph \(X \) that maps the spare nodes to the faulty nodes. In graph-theoretic terms, the
graph \(X \) must satisfy the property that if \(A \) and \(B \) are any two \(k \)-subsets of \(V(X) \),
then there is an automorphism of \(X \) that maps \(A \) to \(B \).

Automorphic reconfiguration can be described using the terminology of group
actions, as follows. Let \(G \) be a group acting on a set \(\Omega \) and let \(k \geq 2 \). Then, \(G \) also acts
naturally on the set \(\Omega^{(k)} \) of all \(k \)-subsets of \(\Omega \) by the rule \(\{\alpha_1, \ldots, \alpha_k\}^g = \{\alpha_1^g, \ldots, \alpha_k^g\} \)
for each \(g \in G \) and each \(\{\alpha_1, \ldots, \alpha_k\} \in \Omega^{(k)} \). A group \(G \) acting on a set \(\Omega \) is said
to be \(k \)-homogeneous if given any two \(k \)-subsets \(A, B \subseteq \Omega \), there exists an element
\(g \in G \) such that \(A^g = B \). In other words, a group \(G \) acting on a set \(\Omega \) is said to be \(k \)-
homogeneous if \(G \) acts on \(\Omega^{(k)} \) transitively. Observe that the property that the graph
\(X \) in the previous paragraph must satisfy is that its automorphism group \(\text{Aut}(X) \) be
\(k \)-homogeneous. What we call \(k \)-homogeneous here is referred to as \(k \)-subtransitive
in [3]. For an introduction to group actions, we refer the reader to [2, Chapter 1]; for
an introduction to \(k \)-homogeneous groups, see [2, Sections 2.1 and 9.4].

Thus, given a basic graph \(Y \) and a desired level of fault-tolerance \(k \), our objective
is to construct a graph \(X \) such that \(X \) is a \(k \)-fault-tolerant realization of \(Y \) and such
that \(\text{Aut}(X) \) is \(k \)-homogeneous. Dutt and Hayes settled this problem for the case
\(k = 2 \) by proving the following result:

Theorem 1. [3, Theorem 2] If \(Y \) is a nonempty graph, \(X \) is a 2-fault-tolerant realization
of \(Y \) and \(\text{Aut}(X) \) is 2-homogeneous, then \(X \) is the complete graph.

Dutt and Hayes posed the problem of generalizing the \(k = 2 \) result of Theorem 1 to
arbitrary \(k \) (cf. [3] p. 253)). In this paper, we resolve this problem (cf. Theorem 3 below). Our proof uses the following result due to Cameron:

Theorem 2. [4, Theorem 2.2] [2, Theorem 9.4A] Let \(G \) be a permutation group acting
on a set \(\Omega \). Let \(m, k \) be integers with \(0 \leq m \leq k \) and \(m + k \leq |\Omega| \). Then, \(G \) has at
least as many orbits in \(\Omega^{(k)} \) as it has in \(\Omega^{(m)} \).

The following is the main result of this paper:

Theorem 3. Let \(k \geq 2 \). If \(Y \) is a nonempty graph, \(X \) is a \(k \)-fault-tolerant realization
of \(Y \) and \(\text{Aut}(X) \) is \(k \)-homogeneous, then \(X \) is the complete graph.

Proof: The case \(k = 2 \) is addressed in Theorem 1 so assume \(k \geq 3 \). Let \(Y \) be a graph
on \(n \) vertices. Here, \(n \geq 2 \) since \(Y \) contains at least one edge. Note that \(X \) is a graph
on \(n + k \) vertices. Let \(G = \text{Aut}(X) \) and let \(\Omega = V(X) \). By hypothesis, the action
of \(G \) on the set \(\Omega \) is \(k \)-homogeneous. Thus, the number of orbits of \(G \) on \(\Omega^{(k)} \) is 1.
Since \(2 \leq n \), \(2 + k \leq n + k = |\Omega| \). Also, \(2 \leq k \). Hence, by Theorem 2, the number of
orbits of \(G \) on \(\Omega^{(2)} \) is also 1. Equivalently, the action of \(G \) on \(\Omega \) is \(2 \)-homogeneous.

Let \(\{u, v\} \) be an edge in \(Y \). Then \(\{u, v\} \) is an edge in \(X \). Let \(a \) and \(b \) be distinct
vertices of \(X \). Because \(G \) is \(2 \)-homogeneous, there is an element \(g \in G \) that maps
\(\{u, v\} \) to \(\{a, b\} \). The automorphism \(g \) preserves adjacency, whence \(\{a, b\} \) is an edge
of X. This proves that any two distinct vertices of X are adjacent, i.e. X is the complete graph.

Theorem 1 and Theorem 3 imply that it is very expensive to have an interconnection network which is k-fault-tolerant and which also supports automorphic reconfiguration because such an interconnection network must be the complete graph.

References

